SUBJECT INDEX

Note: The letters 'f' and 't' following locators refer to figures and tables respectively.

"Active" or "end-functionalized" chains, 144 structure of grafted polymer monolayers Applications of mesoscale field-based in a polymer melt, 147-148 models comparison of density profiles, cases, interaction of two grafted monolayers by attractive chains creation of stable dispersion, aim, 155 Bioengineering, 76 stable vs. unstable dispersion of Branched polymers tethered chains, 156f gelation, 174-175 interaction of two grafted monolayers by calculation of cyclic rank of polymer end-functionalized chains network (Flory theory), 175 analysis of density profiles at different gel point, 175 gallery heights, 158-159, 160f mathematical modeling of branched calculated free energy profiles, SCFT polymerization, objectives, 175 approaches, 157-158, 157f stochastic branching process, 173-174 calculated nanocomposite phase Galton-Watson process, 174 diagram, 160f Gordonian polymers, algorithm for, 174 Flory-Huggins interaction parameters tree/molecular forest, molecular graph used, 156t representation, 174 practical implications of the model, Canonical-ensemble statistical mechanics, 88 predictions of the "compressible CG-MC. See Coarse-grained Monte Carlo model," 161 (CG-MC) interaction of two grafted monolayers CG-MD. See Coarse-grained molecular with different segment sizes, dynamics (CG-MD) Chapman-Enskog method, 122 154, 155f interaction of two grafted monolayers Chemical correlators, 172–173 with equal segment sizes Chemical equilibrium, 90 density profiles of grafted/free Chemical modification of polymers polymers at separations, 148, 149f PAR outlined theory for good/poor interpenetration of grafted solvent, 187-188 monolayers/free polymer, 148 PARs, example esterification of polymethacrylic acid, SCFT/iSAFT calculations, comparison, 148-154, 150f-153f of micro- and nanostructured materials, neighboring-group (NG) model, 187 132-133 saponification of polyvinyl acetate, 186

isomerization, 50–54

Classical equilibrium thermodynamics, 2, 6,	stationary flow distribution in
8, 78–79, 81, 88, 106, 116–117	hydraulic circuits, 64–66
Clausius inequality, 4	MEIS vs. models of nonequilibrium
Coal burning, interrelated processes	thermodynamics
burning of coke, 63-64	areas of computational efficiency,
burning of volatiles, 63	46–50
coal pyrolysis, 63	areas of effective applications, 39-46
Coal pyrolysis, 63	"Model Engineering" (Gorban), 5
Coarse-grained molecular dynamics	reversible and irreversible processes
(CG-MD), 134	(Galileo), 3–4
Coarse-grained Monte Carlo (CG-MC), 134	substantiation for irreversible processes
"Coarse-graining" process, 110	equilibrium and reversibility,
Coke burning, 63–64	interpretations, 8–11
Complex fluids, 76, 95, 110-111, 127	equilibrium approximations, 16-17
Contact geometry, 76–78, 80, 120	experience of classics, 5–8
Continuous stirred tank reactor (CSTR), 190	nonequilibrium thermodynamics,
Conventional free-radical copolymerization	equilibrium interpretations of, 12-16
copolymerization of some monomers,	thermodynamics, emergence of
anomalies in, 185–186	principle of entropy (second law of
mathematical modeling, considerations, 186	thermodynamics), 3
quantitative theory of copolymerization	thermodynamics of nonconservative
short-range effects, types of kinetic	systems, problems of
models, 185	analysis and development of MEISs, 70
Convex programming (CP), 19	analysis of computational problems in
CSTR. See Continuous stirred tank reactor	MEIS application, 70–71
(CSTR)	reduction of models of irreversible
	motion to models of rest, 69–70
Denbigh, 190–191	solution of specific theoretical/applied
Density functional theory (DFT), 134	problems on MEIS, 71
DFT. See Density functional theory (DFT),	Dissipative particle dynamics (DPD), 134
134	Distribution of the residence time (DRT),
Dissipative macroscopic systems,	191, 197
equilibrium thermodynamic modeling of	DPD. See Dissipative particle dynamics
analysis of equilibrium models (Euler and	(DPD)
Lagrange), 3	DRT. See Distribution of the residence time
MEIS	(DRT)
geometrical interpretations, 33–38	
of spatially inhomogeneous systems,	Equations of motion, 6
26–28	Equilibrium models, analysis of (Euler and
with variable flows, 20–26	Lagrange), 3
with variable parameters, 17–20	Equilibrium states, 91
variants of kinetic constraints	Euler–Lagrange equations, 137
formalization, 29–33	Extended Flory principle, 176–177, 184
MEIS application, examples of	
formation of nitrogen oxides during	Fenimore mechanism, 55–56
coal combustion, 54–64	"Field-based" mesoscale theories. See

Density functional theory (DFT)

203

Hydrodynamic stirring effects on properties

Flory–Huggins interaction parameters, 156t Flory principle, 176, 180, 184 Fluid mechanics, 105–113, 117–118, 122–127 "Free" or "matrix" homopolymer chains, 144 Fuel nitrogen oxides, formation of, 54–55

Galileo, 3 Galton-Watson branching process, 174 Gel, 175 Gelation, 174-175 Gel point, 175, 183 Gibbs paradox, 77 Gibbs phase rule, 16, 19, 47, 67 Gordonian polymers, 174-175, 178, 180, 183 Grafted polymer monolayers interaction by attractive chains creation of stable dispersion, aim, 155 stable vs. unstable dispersion of tethered chains, 156f interaction by end-functionalized chains analysis of density profiles at different gallery heights, 158-159, 160f calculated free energy profiles, SCFT approaches, 157-158, 157f calculated nanocomposite phase diagram, 160f Flory-Huggins interaction parameters used, 156t practical implications of the model, 161 predictions of the "compressible model," 161 interaction of, with different segment sizes, 154, 155f interaction of, with equal segment sizes density profiles of grafted/free polymers at separations, 148, 149f interpenetration of grafted monolayers/free polymer, 148 SCFT/iSAFT calculations, comparison, 148-154, 150f-153f structure in a polymer melt, 147-148 comparison of density profiles, cases, 147f

Henry law, 16 H-theorem, 3, 6 Hydraulic circuit theory, 24 Hydrodynamic fields, 106

of polymers effect on composition inhomogeneity, 195-196 general considerations advantages of continuous commercial processes over batch processes, 190 control of inhomogeneity of polymer, factors, 190 conventional radical polymerization systems, 191 degree of hydrodynamic stirring in PFR/CSTR, 190 living anionic polymerization systems, statistical characteristics of a polymer, hierarchy, 189 microsegregation, 197 polycondensation, 194-195 polymer-analogous reactions, 196-197 radical polymerization, 191-194

Ideal kinetic model, 175–176 Irreversible processes, equilibrium thermodynamic modeling of equilibrium and reversibility, interpretations, 8-11 Boltzmann trajectories of motion, 9 dynamics of a system with periodic agitation (Gorban), 10, 10f equilibrium approximations, 11 equilibrium, main feature in mechanics, "far from equilibrium," meaning (Gorban), 11 equilibrium approximations, 16-17 "damnation of dimension," 17 experience of classics, 5-8 classical equilibrium thermodynamics, computational tool used, 8 equilibrium and reversibility, analysis of interrelations, 6 equilibrium trajectories study and mathematical relations (Gibbs), 6-7 law of Fick, 8 partial equilibria notion, irreversible

process of light diffusion, 8

Irreversible processes, equilibrium	Kinetic models of macromolecular reactions
thermodynamic modeling of	ideal kinetic model
(Continued)	Flory principle, assumptions, 176
principle of entropy increase	process of radical polymerization,
(Boltzmann), 6	175–176
theory of electric circuits (Kirchhoff), 7	models allowing for the deviations from
nonequilibrium thermodynamics,	ideality
equilibrium interpretations of, 12-16	extended Flory principle, 176-177
equilibrium interpretation of Prigogine	polymer nature of reagents, long-range
theorem, situations (entropy	effects, 177
equations), 12–14	substitution effects, short-range effects,
Onsager reciprocal relations, 14–16	176
ISAFT model	"Kink" mechanism, 161
classical DFT, tool	Kirchhoff theorem of minimum heat
application in modeling interfacial properties of LJ fluid, 135–136	production, 23
Helmholtz free energy as function of	"Labeling-erasing" procedure, 181, 184, 185
density distribution, basis, 136	Lagrange equilibrium equation, 6
prediction of microscopic structure/	Law of Fick, 8
thermodynamics/phase behavior, 135	Least action principle (PLA), 7, 16
extension to grafted polymer chains,	Le Chatelier-Brown principle, 16
140–141	Legendre transformation, 76, 78-81, 83-85,
homogeneous systems	89, 92
PRISM, application, 136	Lennard-Jones (LJ) fluid, 136
Wertheim's TPT1, development of	"Living" radical polymerization (LRP),
SAFT equation, 136	193–194
modeling of polyatomic molecules	LJ fluid. See Lennard-Jones (LJ) fluid
application in heterogeneous polymer	LRP. See "Living" radical polymerization
systems, features, 140	(LRP)
density profile, expression, 139	
ideal gas free energy functional, 138	Mass action laws, 16, 77, 99, 101, 175
linear polymer chain formation of m	Maximum entropy principle, 76, 81
segments from m associating	'Mechanics,' 8
spheres, 137-140, 138f	Mechanisms of NO formation, 54-56
open system in canonical ensemble, free	MEIS. See Model of extreme intermediate
energy computation, 137-140	states (MEIS)
quantum DFT, 135	MEIS application, examples of
Isolated systems, study of (Gorban), 10, 10f	formation of nitrogen oxides during coal combustion
Kinetic block of model, thermodynamic	advantages of MEIS-based modeling, 64
approaches	coal burning, interrelated processes
constraint on process rate determined	(kinetic models), 63-64
only by one reaction, 31-32	formulation of inequality by kinetic
thermodynamic analysis of kinetic	equations, 59
equations	fuel nitrogen oxides, formation of,
constraints used, 30–31	54–55
unity of thermodynamics and kinetics	kinetic constraints formulations in
constraints used, 29-30	slow/fast subsystem, 57

205

NO formation from dinitrogen oxide, 56	interaction of two grafted monolayers
prompt nitrogen oxides, formation of	with different segment sizes, 154
(Fenimore mechanism), 55–56	interaction of two grafted monolayers
rate of nitrogen oxide formation,	with equal segment sizes, 148–154
equation, 58	of micro- and nanostructured materials,
theoretical/experimental NO emissions	132–133
at coal combustion, calculations, 61-	structure of grafted polymer monolayers
62, 62f	in a polymer melt, 147–148
thermal nitrogen oxides, formation of	modeling of polymeric systems
(Zeldovich mechanism), 55	mesoscale approaches, 134
isomerization, 50-54	problems, 133
computational methods/accuracy,	short-range structure, role in
52–54	applications, 133
constraint used, 50-51	theory
graphical interpretation of	extension of iSAFT model to grafted
isomerization process, 51f	polymer chains, 140-141
interpretation of studied problem,	iSAFT model, 135-140
advantage, 52	self-consistent field theory, 141-146
kinetic equations for isomerization	Microcanonical-ensemble statistical
process, curves of, 53f	mechanics, 88
"physico-economic" self-organization	Microsegregation, 197
problem, analysis, 52	"Model Engineering," 5, 29, 39, 40, 68, 70
study of multistage processes,	Model of extreme intermediate states
difficulties, 53	(MEIS), 2
stationary flow distribution in hydraulic	geometrical interpretations, 33-38, 35f
circuits, 64–66	hexane isomerization reaction, analysis,
final equilibrium model, form, 65	36f, 37
isothermal flow of incompressible fluid	idea of tree in formalization of
in three-loop circuit, example, 64-66	macroscopic kinetic constraints, 38
Prigogine theorem, aaplication, 66	notion of thermodynamic tree
results of flow distribution calculation,	(Gorban), 36–38, 36f
66t	polyhedron of material balance, 34, 36f
scheme of the hydraulic circuit, 65f	use of tree notion in constructing
MEISs isomerization, 50–54	algorithms, 38
MEIS vs. models of nonequilibrium	of spatially inhomogeneous systems,
thermodynamics	26–28
areas of computational efficiency, 46-50	equations, 26–28
areas of effective applications, 39–46	graph of spatially inhomogeneous
Mesoscale approaches, 134	system, 27f
Mesoscale field-based models, applications	indication of harmful substance
in polymer melts	distribution in vertical air column, 28
applications	macroscopic kinetics constraints
interaction of two grafted monolayers	inclusion, difficulties, 28
in presence of attractive chains,	material balances in model, 28
154–155	parametric and flow MEIS features, 28
interaction of two grafted monolayers	with variable flows, 20–26
in presence of end-functionalized	construction of flow models of
chains, 156–161	hydraulic systems, 24–26

Model of extreme intermediate states (MEIS) combination of scales (Continued) example: direct molecular simulations, "equilibrium" derivation, hydraulic 111-116 circuit theory, 24 single scale realizations flow modifications, groups, 20 example: a simple illustration, 96-98 interpretation of flows as coordinates of example: chemically reacting isothermal systems, 98-101 states, 20 nonstationary flow distribution, example: complex fluids, 110-111 equations, 23-24 example: fluid mechanics, 105-109 stationary flow distribution in closed example: kinetic theory of chemically circuit, equations, 20-22 reacting systems, 101-105 thermodynamic model of passive example: particle dynamics, 109-110 circuit, 22-23 Multiscale thermodynamics in chemical with variable parameters, 17-20 engineering convex programming (CP), 19 Gibbs formulation of classical list of stages in model, need for thermodynamics, 76 indication, 19 macroscopic/microstructure behavior of model equations, assumptions, 18-19 multicomponent systems, 76-77 variants of kinetic constraints multiscale equilibrium thermodynamics formalization, 29-33 classical equilibrium thermodynamics, Boltzmann assumption, basis, 29 78-79 kinetic block of model, thermodynamic mesoscopic equilibrium approaches, 29-32 thermodynamics, 79-91 MEIS modifications, difficulties, 32-33 multiscale nonequilibrium "Model Engineering," 29 thermodynamics optimal description of constraints on combination of scales, 111-116 single scale realizations, 95-111 macroscopic kinetics, issues, 33 Monads, 184 multiscale nonequilibrium Multiscale equilibrium thermodynamics thermodynamics of driven systems classical equilibrium thermodynamics, example: a simple illustration, 120-122 example: Chapman-Enskog reduction of kinetic theory to fluid mechanics, mesoscopic equilibrium thermodynamics contact geometry, applications, 80-81 122-127 example: equilibrium kinetic theory (ideal gas), 81-84 Nano-engineering, 76 example: equilibrium kinetic theory Neighboring-group (NG) model, 187 (van der Waals gas), 84-86 Nonconservative systems, 6, 9, 66, 69-71 example: Gibbs equilibrium statistical Nonequilibrium thermodynamics, 4 mechanics, 86-89 Nonideal kinetic models, 180, 183 example: multicomponent isothermal systems, 89-91 Opalescence phenomenon, 8 example: multicomponent nonisothermal systems, 91 fundamental thermodynamic relation, PARs. See Polymer-analogous reactions 79 - 80(PARs) "Particle-based" mesoscale simulations. See Gibbs and Gibbs-Legendre manifolds, Dissipative particle dynamics (DPD) Multiscale nonequilibrium thermodynamics Paul Flory, 167, 178

PFR. See Plug flow reactor (PFR)	PAR outlined theory for good/poor
PLA. See Least action principle (PLA)	solvent, 187–188
Plug flow reactor (PFR), 190	PARs, example
Polycondensation, 182–184, 194–195	esterification of polymethacrylic acid, 186
choice of ideal kinetic model, 182–183	neighboring-group (NG) model, 187
cross-linking of reactive oligomers,	saponification of polyvinyl acetate, 186
182–183	Polymers, kinetic modeling of
extension of "substitution effect," 184	choice of model, considerations, 166–167
Gordonian polymers (branching process)	chemical modification of polymers, 167
"labeling-erasing" procedure,	polydispersity of products for
183–184	synthesis, 167
monads, kinetically independent	description of polymers, peculiarities
elements, 184	chemical correlators, 172–173
nonideal kinetic models, 183	microstructure parameters, 171–172
statistical description of sol/gel	quantitative description of
molecules, 183	macromolecules, problems, 168–169
Polymer adsorption, 132	statistical approach, 169–171
Polymer-analogous reactions (PARs), 186,	general theoretical results
196–197	chemical modification of polymers,
Polymer–clay nanocomposites, 134	186–188
dispersion in clay platelets, stabilization	conventional free-radical
of, 135	copolymerization, 184–186
equilibrium morphology of, 135	polycondensation, 182–184
synthesis of, 134–135	hydrodynamic stirring effects on
Polymer properties, hydrodynamic stirring	properties of polymers
effects on	effect of stirring on composition
effect on composition inhomogeneity,	inhomogeneity, 195–196
195–196	microsegregation, 197
general considerations	polycondensation, 194–195
advantages of continuous commercial	polymer-analogous reactions, 196–197
processes over batch processes, 190	radical polymerization, 191–194
control of inhomogeneity of polymer,	kinetic models of macromolecular
factors, 190	reactions
conventional radical polymerization	ideal kinetic model, 175–176
systems, 191	models allowing for the deviations
degree of hydrodynamic stirring in	from ideality, 176–177
PFR/CSTR, 190	methods of calculations
living anionic polymerization systems,	extension of statistical and kinetic
191	methods, 180–182
statistical characteristics of a polymer,	kinetic method, 179–180
hierarchy, 189	statistical method, 178–179
microsegregation, 197	specificity of branched polymers
polycondensation, 194–195	gelation, 174–175
polymer-analogous reactions, 196–197	stochastic branching process, 173–174
radical polymerization, 191–194	Polymers, peculiar features in
Polymer reference interaction site model	chemical correlators, 172–173
(PRISM), 136	microstructure parameters, 171–172
Polymers, chemical modification of	statistical approach
,, enclined installed of	ominated approach

Polymers, peculiar features in (Continued) specificity of branched polymers isomerisms, types, 171 gelation, 174-175 Markovian copolymers, features, 170 stochastic branching process, 173-174 mathematical modeling for non-PRISM. See Polymer reference interaction Markovian copolymers, 170 site model (PRISM) microstructure of copolymer molecules, Prompt nitrogen oxides, formation of, 55-56 characteristics of second group, 171 SCD function, characteristics of first Quantum theory of radiation (Beiträge), 16 group, 170 Quasiparticles/"ghost" particles, 116 Principle of entropy, 3, 6 Principle of the least energy dissipation Radiation thermodynamics, 7-8 (Rayleigh), 7 Radical polymerization, 175-176, 191-194 Principles of statistical chemistry applied to The Raoult law, 16 kinetic modeling of polymers choice of model, considerations, 166-167 chemical modification of polymers, 167 SCD. See Size-composition distribution polydispersity of products for (SCD) synthesis, 167 SCFT. See Self-consistent field theory description of polymers, peculiarities (SCFT) chemical correlators, 172-173 Self-consistent field theory (SCFT), 134, microstructure parameters, 171-172 141 - 146quantitative description of applications, 141 macromolecules, problems, 168-169 de Gennes-Edwards description of statistical approach, 169-171 polymer molecule, 141 general theoretical results exfoliated/intercalated/immiscible morphologies, theories, 142 chemical modification of polymers, 186-188 lattice model, schematic depiction, 143f conventional free-radical free/active/grafted chain polymers, copolymerization, 184-186 evaluation of propogators, polycondensation, 182-184 144-145 hydrodynamic stirring effects on free energy/density profile, properties of polymers expressions, 143-145 effect of stirring on composition nanocomposite phase diagrams, inhomogeneity, 195-196 generation, 142 microsegregation, 197 Single scale realizations in multiscale polycondensation, 194-195 nonequilibrium thermodynamics polymer-analogous reactions, 196-197 example: a simple illustration, 96-98 radical polymerization, 191-194 example: chemically reacting isothermal kinetic models of macromolecular systems, 98-101 reactions example: complex fluids, 110-111 ideal kinetic model, 175-176 example: fluid mechanics, 105-109 models, allowing for the deviation example: kinetic theory of chemically from ideality, 176 reacting systems, 101-105 methods of calculations exchange-of-identity collisions, 105 extension of statistical and kinetic inelastic collisions, 105 methods, 180-182 multicomponent systems with binary kinetic method, 179-180 chemical reactions, 105 statistical method, 178-179 spatially nonlocal collisions, 105

example: particle dynamics, 109–110

Size–composition distribution (SCD), 170 Spatially inhomogeneous systems, 17, 26–28, 67, 70, 71 Stoichiometric coefficients, 90

Synergetics, 4, 12, 39, 46, 66, 67, 69

Theory of dynamic systems, 4, 12, 39, 67, 69, 167
Theory of electric circuits (Kirchhoff), 7
Thermal nitrogen oxides, formation of, 55
Thermodynamic Lyapunov functions, 3

Thermodynamic perturbation theory (TPT1), 136

'Thermodynamics,' 3

TPT1. *See* Thermodynamic perturbation theory (TPT1)

WAXS. See Wide-angle X-ray scattering (WAXS)

Wertheim's thermodynamic perturbation theory, 136

Wide-angle X-ray scattering (WAXS), 142

Zeldovich mechanism, 55